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ON SUBSONIC LAMINAR SEPARATION FROM THE,DISCONTINUITY EDGE OF A PROFILE* 

V.N. DIESPEROV 

Asymptotic methods are used to study a steady subsonic flow of a perfect gas past 
a convex angle at high Reynolds' numbers. The solution /l/ describing a potential 
flow past a corner with a free streamline is taken as the limit solution. The pres- 
sure gradient in this solution tends to infinity on approaching the corner point 
from the direction of incoming flow. Its effect on the boundary layer is to form a 
domain of free interaction, first studied in /Z-4/. The Navier-Stokesequations 
were solved outside the domain of free interaction in the complete heighborhood of 
the corner in /l/. The flow in the domain of free interaction was studied under the 
assumption that the surface of the corner is thermally insulated. The problem des- 
cribing this flow in the first approximation is reduced by means of affine trans- 
formations to a problem of laminar separation of an incompressible fluid /5/. This 
makes it possible to establish a similarity law for subsonic gas flows in the neigh- 
borhood of a corner point. 

We consider an irrotational flow past a convex corner 
I AOD of a perfect gas with a free streamline OS emerging from 

the apex of the corner (lee Fig.1). The velocity of the gas 
is assumed subsonic. We introduce the Cartesian z,y -coord- 
inate system in which the negative ssmiaxis I coincides with 

AO. We denote by v, and u,, the projectionsofthe velocity 
vector on the + and Y axis respectively, p is density, p is 
pressure, T is temperature, Mis the Mach No., p in the co- 
efficient of viscosity, p. is the velocity at the cornerpoint 
of the external potential flow, and L is its characteristic 
dimension. Wlow we assUme all equations to be dimensionless. 

Fig.1 
The values of the flow parameters atthe corner point are taken 
as characteristics, and denoted by zero subscript. 

The solution constructed in /l/ which corresponds to a flow past a corner with a free 
streamline, holds in the range Og Me< i. When Mo<ir the solution in the neighborhood of 
the corner point with dimensions 1 <eSd,,lB, e = I- MO2 (region 6) can be written in the first ap- 
proximation as 

e=S*Re[i(2+ifiv)'~'l+ . . . (1) 

Here dll is a constant determined by the global solution and 'p is the perturbation potential. 
The corresponding favorable pressure gradient tends as 1-O (s<O) , with fixed e and 4,. to 
infinity as (-~)"'t. It interaction with the boundary layer results in formation of a domain 
of free interactions. Since the thickness of the filaments in narrow region adjacent to the 
wall changes drastically, it follows that the pressure in this region is induced by the bound- 
ary layer itself. We assume that the characteristic dimension of the domain of free inter- 
action is 8~41. 

Let us denote the velocity and density of the boundary layer at the coordinate origin bY 
~(Y),R(Y),~= R~~'*Y. Analysis of the flow in the attached region has shown /l/ that V(Y)- 1, 
R(Y)-i,Y-cu LT (Y) 5 r/&.,Y+ + . ., R (Y) = R (0) + coy”2 + . ., Y - 0 

We divide the field of flow in the domain of free interaction into three regions (see Fig.1). 
In the upper region 1 the viscosity and heat conductivity can both be neglected and the flow 
in it is not potential. In the middle region 2 the dissipative factors have no significant 
influence, but the velocity field is rotational. In the narrow region 3 adjacent to the wall 

the flow is governed mainly by the viscous StreSsas. The heat conductivity exerts a second 

order influence, since the gas is practically incompressible at low velocities and within the 

temperature regimes in question. 
We seek, in the basic part of the boundary layer (region 2) a solution of the Navier- 

Stokes equations in the form of Series 
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V, = Uj (Ys) + Re+uo (X Yr) + Re%, (X, Y,) + . . . 
p = R (Y,) + Re+po (X,'Y,) + Rk’* pl (X, YJ + . . . 

V, = Re”‘V, (X, Yr) + Re”*V, (X. Y,) + . . ., vu = RB’~‘~ 

p = 1 + yMoaReA”po (X) + . . ., z = Re-“*X9 Y, = Y = Re”‘y 
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(2) 

where Re= pffloLlpo(y is the ratio of specific heats. We obtain ILL, Vi,pi(i= 0,i) from a system 
of ordinary differential equations. Integrating it we obtain (A, (x) is an arbitrary function) : 
for Y,-0 

ux= &Y;"+ $- b&(X) R&Y;'* + + $&Rs-'l.y;".+ ., . 

p = R (0) + Re+ ic~~~+gc.A,(X)~~+(~~)b~z +w~(O))P~(X)]+... 

Lb ‘II=- 3 
dAa &‘I*: + 

OdX + Re”*Y;” + . . . 

(3) 

and for Y~--w 

u =1-R/i" x PO(X) +. . .1 p = i + Rea’*Wo%pPp, (X) + . . . 

vv=-Re2’* ++..., ~=l+v%~p,(X)Re ++... 

In the lower region 3 adjacent to the wall the solution is sought in the form 

u, = Rd’$,(X, Y,)+ . . . . V, = Re"*VI(X, Yr)+ . . . 
p = R (0) + Re -“‘p. (X, Y,) + Re-“‘p, (X, Y&f- . . 
p = i + yMp*Red’*po(X)+ . . . . I = Re-"'*X, Y, = RC"*Y8 

(4) 

(5) 

Substituting (5) into the equations of continuity and impulse, we obtain the following system 
of Prandtl equations: 

-$+ +O, R(O)(u,++V+)=-$$+&+ (6) 

in which the pressure is not given and must therefore be determined. The viscosity coeffic- 
ient is proportional to the temperature p= CT. When X---m, the velocity zbg must merge 
with the velocity of the attached flow in region 4 /l/ 

(7) 

Function QD, satisfies the boundary value problem with unique solution /6/ 

+ o$-L($+$+ 

CD0 (0) = a,’ (0) = 0, @, (0 = Bp + Bat’* + . . .( r - 00 
,,, zz ,f”,&,-“~~+&, 

(8) 

The constants B, and E, were obtained by numerical methods in /5,7/. The exapnsions (3) yield, 
as Y,+w, 

Lo= +bdi;il+.... Vy/ur = - d&ldX + . . . (9) 

At the wall Y,= O,X<O thevelocitycomponents satisfytheconditionofadhesion uz=v =o. 
We shall assume that the Prandtl number is equal to unity and the wall is thermally in- 

sulated, i.e. BTIBY, = 0 when Ys = 0, X<O. Then po(X,Y,)=O and the following integral can be 
used in determining the density: 

Using this integral with the equations of continuity, we find 

p1 E 9 Ra (0) M,%,r + pR (0) M,~p, (X) 

We seek the solutions in the upper region (1) in the form of expansions 

(10) 
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By introducing the function of potential of perturbed velocities rp,(X, Y,), we can m&e the 
flow in region 1 governable by the equations 

C,Ll) % = 1 + Re+uo (X, Y,) + . . .( “” = Re-%~ (X, Y,) + . 

p = 1 i- Re2/‘po (X, Y,) + . ., 
v = R&Y,, 5 = R@X 

p = 2 -4. Re+'yM,W,(x, YJ + . 

(12) 

The boundary conditions at X<O are obtained by matching the expansions (11) and (4). we have 

aeO dAo 
au,=-T' %=-PO(x), Y1=0, xgo (13) 

Considering the flow in stagnation zone /1,5/ we obtain 

acpdax = 0, x > 0, Ye = 0 (14) 

When X'+ Y1'-=, the solution of the first equation of (121 must be transformed into (11,i.e. 

cpO _ $ d;;tt,+% Re [i(++iY,)(/‘] j....Y,>O (15) 

To find the flow parameters in the domain of free interaction, we must solve the boundary 
value problems (6),(7),(g) and (12)-(15), together with the adhesion condition, which are 
related to each other. Let us transform the variables and flow parameters in the regions 1 
and 3 

(16) 

The transformations (16) convert the boundary value problems (12)-(15) and (6) ,(7),(g), to- 
gether with the condition of adhesion, into canonical form. In region S we have 

s++o, ah ati, 
&o.~+vo~=-$-+g+ (17) 

s 

B, = -&B$t+...,*=- $+..., r;,-.cq xgo 

+,'2[-x,"*J$ +..., 5 =2""~~;(-x)'*,x--aJ 

liO = v0 = 0, FJ = 0, x<o 

and for the upper region 1 we obtain 

3 =i%l (18) 
ax:: +T=O 

aqO -= ax I%(X), aiiio x=-g& x<o. T,= 0 

g&o, x>o. F1=0; ipa= ~Re[i(X+i~,)li']+.... 

% xa+~iilz-rcc; r= -&(X, T,) =iio(X, y7) 

The boundary value problems (17) and (18) were solved numericallY in /8/. The transformation ~ 
(16) can be regarded as a similarity law for subsonic flows of compressible fluids withafree 
streamline, past corner points. 
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